PROBLEM 1: WEIGHT, PULLEY, AND ROD ASSEMBLY

GIVEN

A vertical load P is applied at the end of rigid rod B-C.

![Figure 1. Weight, pulley, and rod](image)

REQUIRED

(a) Neglecting the weight of the rod, express the angle θ corresponding to the equilibrium position in terms of P, l, and the counterweight W.

(b) Determine the value of θ corresponding to equilibrium when $P = 500$ N, $W = 300$ N, and $l = 500$ mm

(c) Is the answer for part (b) statically stable, statically unstable, or statically neutral?

SOLUTION

Part (a), equilibrium position in terms of P, W, and l

Define position parameter $= \theta$, and its datum (zero potential energy) at $\theta = 0$. The height of the weight W is denoted by U_W. Define $U_W = 0$ at $\theta = 0$. The displacement downward of point B is denoted by U_P. Define datum $U_P = 0$ at $\theta = 0$.

By geometry, $U_W = \text{distance } |AB| = 2l\sin(\theta/2)$

By geometry, $U_P = l\sin(\theta)$

$V = \text{total potential energy}$

$= WU_W - PU_P$

$= 2W\sin(\theta/2) - P\sin(\theta)$

$dV/d\theta = W\cos(\theta/2) - P\cos(\theta)$

At equilibrium, $dV/d\theta = 0$
\[W\cos(\frac{\theta}{2}) - Pl\cos(\theta) = 0 \]

\[(W/P)\cos(\frac{\theta}{2}) - \cos(\theta) = 0 \]

\[\theta = \cos^{-1}\left((W/P)\cos(\theta/2)\right) \] (1)

By iteration of equation 1, \(\theta \) corresponding to equilibrium is shown in Figure 2.

Figure 2. Equilibrium position

Part (b): Equilibrium for \(P = 500\text{N}, W = 300\text{N}, l = 500 \text{mm} \)

\[W/P = 0.6. \text{ By iteration of equation (1), } \theta = 1.02 \text{ rad} (= 58^\circ) \]

Part (c) Stability

\[\frac{d^2V}{d\theta^2} = -0.5Wl\sin(\theta/2) + Pl\sin(\theta) \]

\[\frac{d^2V}{d\theta^2} \bigg|_{\theta = 1.02} = -0.5(300\text{N})(0.500\text{m})\sin(1.02/2) + (500\text{N})(0.500\text{m})\sin(1.02) \]

\[= 176\text{Nm} > 0 \Rightarrow \text{statically stable.} \]
Problem 2: Rods and Gears

Given
Two uniform rods, AB and CD, are attached to gears of equal radii, as shown. The picture is an elevation, so gravity acts downward in the plane of the page. The masses of rods AB and CD are $m_{AB} = 350\text{g}$ and $m_{CD} = 600\text{g}$, respectively.

![Figure 3. Rods and gears configuration](image)

Required
Determine the positions of equilibrium of the system. State in each case whether the equilibrium is stable, unstable, or neutral.

Solution
Position parameter is θ. $V_g = 0$ at $\theta = 0$.

$$V(\theta) = -m_{AB}(l/2)\sin(\theta)g + m_{CD}(l/2)(1 - \cos(\theta))g$$

At equilibrium,

$$\frac{dV}{d\theta} = -m_{AB}(l/2)\cos(\theta)g + m_{CD}(l/2)\sin(\theta)g = 0$$

$$-m_{AB}\cos(\theta) + m_{CD}\sin(\theta) = 0$$

$$\frac{m_{AB}}{m_{CD}} = \tan(\theta)$$

$$\theta = \tan^{-1}\left(\frac{m_{AB}}{m_{CD}}\right) - n\pi, \quad n = 0, 1$$

$$= \tan^{-1}\left(\frac{350}{600}\right) - n\pi$$

$$= 0.528, -2.61 \text{ (or equivalently, } 30.3^\circ, -150^\circ)$$

$$\frac{d^2V}{d\theta^2} = m_{AB}(l/2)\sin(\theta)g + m_{CD}(l/2)\cos(\theta)g$$

$$\frac{d^2V}{d\theta^2}|_{\theta_{eqm}} = 3.41l \text{ or } -3.41l \text{ for } \theta = 0.52 \text{ and } -2.61, \text{ respectively}$$

Stable equilibrium at $\theta = 0.528 \text{ rad (30.3°)}$, unstable equilibrium at $\theta = -2.61 \text{ rad (-150°)}$